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Abstract The aim of this work is to find approaches for the Arrhenius integral by
using the n-th convergent of the Jacobi fractions. The n-th convergent is a rational
function whose numerator and denominator are polynomials which can be easily
computed from three-term recurrence relations. It is noticed that such approaches are
equivalent to the one established by the Gauss quadrature formula and it can be seen
that the coefficients in the quadrature formula can be given as a function of the coef-
ficients in the recurrence relations. An analysis of the relative error percentages in the
approximations is also presented.

Keywords Nonisothermal kinetic · Arrhenius integral · Jacobi fractions · Three-term
recurrence relations · Quadrature formula

1 Introduction

The rate of a condensed-phase chemical reaction has been conveniently parameterized
as a function of the temperature τ , and the conversion fraction of the reactant, φ as
follow:

dϕ

dt
= κ(τ) f (ϕ) (1)

where dϕ/dt is the rate of the reaction in a certain instant t and f (ϕ) is the reaction
model which describes the dependence of the reaction rate on the extent of the reaction
and κ(τ) is a temperature-dependent rate constant. It is usual to suppose κ(τ)as the
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Arrhenius equation:

κ(τ) = A exp

(
− E

Rτ

)
,

where A is the Arrhenius pre-exponential factor, E is the activation energy and R is
the gas constant [1,2].

The integration of the Arrhenius equation is usually required to perform the ki-
netic analysis of experimental data obtained under nonisothermal conditions; thus, if
the temperature is time-changeable, then the conversional fraction is also tempera-
ture dependent. Supposing that temperature variation is conducted at a constant rate,
β = dτ/dt , Eq. (1) becomes:

dϕ

dτ
= A

β
exp

(
− E

Rτ

)
f (ϕ).

Rearranging and integrating the above equation for temperature τ varying from 0 to
T and the fraction of conversion ϕ varying from 0 to α, the following equation can be
derived:

∫ α

0

1

f (ϕ)
dϕ = AE

β R
I (x) (2)

where x = E/RT and the function I (x) has been defined by the following integral:

I (x) =
∫ ∞

x

exp( − z)

z2
dz. (3)

Integration by parts transforms the above integral as follows:

I (x) = exp( − x)

x
−

∫ ∞

x

exp( − z)

z
dz,

and changing the variable z = x − w, the following expression for I (x) is obtained:

I (x) = exp (−x)

x

(
1 − x

∫ 0

−∞
exp(w)

x − w
dw

)
. (4)

The integral I (x), known as the temperature integral or integral of the Arrhenius equa-
tion, does not have an exact analytical solution. Several approximated equations to
that integral have been proposed in literature. The most popular approximations are
imprecise in evaluating the Arrhenius integral when they are compared with those
values calculated by numerical integration. This lack of accuracy can cause problems
in the estimation of the kinetic parameters [3,4].

The closed form approximations, which result in a more accurate calculation of the
Arrhenius integral are those based on rational approximations [5,6].
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In this work, the aim is to present new rational approximations to the Arrhenius inte-
gral obtained by three-term relation involving the n-th convergent of a Jacobi fraction.
In addition, approximations by the gaussian quadrature formula and their comparison
to the one obtained from Jacobi fractions have been determined. The calculus of the
relative error percentages to the Arrhenius integral approximation regarding some x
values were carried out. The numeric and symbolic calculus presented were obtained
by using Maxima software.

2 Convergents of the Jacobi fractions

In order to approach the integral in Eq. (4) was considered a sequence {Qn(z)} of
polynomials defined by:

Qn(z) =
n∑

k=0

(
n!
k!

)2 zk

(n − k)! , n = 0, 1, 2, . . . . (5)

The Qn(z) polynomials are orthogonal to (−∞,0) values with respect to the weight
function exp(z), which is:

∫ 0

−∞
zs Qn(z)exp(z)dz =

{
(n!)2 if s = n
0 if 0 ≤ s ≤ n − 1

}
. (6)

The first sequence of polynomials, {Qn(z)} has been defined and, therefore, a second
polynomial sequence, {Pn(z)}, can now be defined:

Pn(z)=
∫ 0

−∞
Qn(z) − Qn(w)

z − w
exp(w)dw, n = 1, 2, . . . , (7)

where Pn(z) is a polynomial of degree n − 1. These polynomials are known in con-
tinued-fraction theory as associated polynomials [7,8].

It is possible to show that the Qn(z) polynomials can be generated by the following
three-term recurrence relation:

Qn+1(z)= (z + αn) Qn(z) − βn Qn−1(z), n = 1, 2, . . . , (8)

with Q0(z)= 1,Q1(z) = z + 1 and the coefficients are given as αn = 2n + 1 and
βn = n2.

From definition (7) and using Eqs. (8) and (6), the following expression can be
written:

Pn+1(z) − (z + αn) Pn(z) + βn Pn−1(z) =
∫ 0

−∞
Qn(w)exp(w)dw = 0,

n = 2, 3, · · ·
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Thus, from the equation above, it can be seen that {Pn(z)} is a sequence of polynomials
generated by the three-term recurrence relation:

Pn+1(z) = (z + αn) Pn(z) − βn Pn−1(z), n = 2, 3, . . . , (9)

with P1(z) = 1 and P2(z)= z + 3.
Those previous three-term relationships suggest that the quotientPn(z)/Qn(z) can

be considered the n-th convergent of the continued fraction, also called a Jacobi-type
continued fraction [8]. On the other hand, from the definition of Pn(z), the following
can be obtained:

Pn(x)

Qn(x)
= 1

Qn(x)

∫ 0

−∞
Qn(x) − Qn(w)

x − w
exp(w)dw, x > 0,

that is:

∫ 0

−∞
exp(w)

x − w
dw = Pn(x)

Qn(x)
+ δ(x), (10)

where the function δn(x) is defined by:

δn(x)= 1

Qn(x)

∫ 0

−∞
Qn(z)

x − z
exp(z)dz. (11)

Now, the partial fraction decomposition of the rational functionPn(z)/Qn(z) in Eq.
(10) is defined as:

Pn(z)

Qn(z)
=

n∑
k=1

cnk

z − znk
, (12)

where znk is the k-th zero of Qn(z) and the coefficients cnk are given by:

cnk = lim
z→znk

(z − znk) Pn(z)

Qn(z)
= Pn (znk)

Q′
n (znk)

. (13)

Making use of the previous recurrence relation of the polynomials Pn(z) and Qn(z),
it is easy to show that:

Qn+1(z)Pn(z) − Pn+1(z)Qn(z)= − β1β2 . . . βn+1.

In particular, if z = znk then above equation becomes:

Pn(znk) = −β1β2 . . . βn+1
Qn+1 (znk)

.
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Therefore the coefficients cnk , defined in Eq. (13), can be written as:

cnk = −β1β2 . . . βn+1
Qn+1 (znk) Q′

n (znk)
. (14)

3 Gauss quadrature formula

Another approximation to the integral in Eq. (4) can be obtained by using a quadrature
formula. The Gauss quadrature formula will be considered here, in which the nodes
znk are the zeros of the Qn(z) polynomial [8]:

∫ 0

−∞
exp(z)

x − z
dz ≈

n∑
k=1

γnk

z − znk
, (15)

where γn1, γn2, . . . , γnn are positive numbers, defined by:

γnk =
∫ 0

−∞
Qn(z)

(z − znk) Q′
n (znk)

exp(z)dz.

From the Christoffel-Darboux identity [8], it follows that:

Qn(z)

(z − znk)
= −β1β2 . . . βn+1

Qn+1 (znk)

n∑
i=0

Qi (z)Qi (znk)

β1β2 . . . βi+1

and thus the coefficients, γnk , in the quadrature formula can be written as:

γnk = −β1β2 . . . βn+1
Q′

n (znk) Qn+1 (znk)

∞∑
i=0

Qi (znk)

β1β2 . . . βi+1

∫ 0

−∞
Qi (z)exp(z)dz.

As a consequence of the orthogonality property in Eq. (6) and remembering that
Q0(z)=β1 = 1, the above equation is simplified as:

γnk = −β1β2 . . . βn+1
Q′

n (znk) Qn+1 (znk)
. (16)

Therefore, from Eqs. (14) and (16), it can be seen that:

cnk = γnk .

By this means, it can also be seen that the breaking down the equation into partial
fractions of the rational function Pn(z)/Qn(z), given in Eq. (12) is equivalent to the
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quadrature formula in Eq. (15), which is:

Pn(z)

Qn(z)
=

n∑
k=1

γnk

z − znk
. (17)

4 Approximations to the Arrhenius integral

Inserting the expression of the right-hand side of Eq. (10) into Eq. (4), it can be seen
that the Arrhenius integral is now given by:

I (x)= exp (−x)

x

(
1 − x

Pn(x)

Qn(x)

)
+ exp (−x) δn(x), (18)

where Pn(x)/Qn(x) can be determined by recurrence relations (8) and (9), or even by
the quadrature formula given in Eq. (17). The term δn(x) is defined in Eq. (11).

The above results suggest the following approximation for the Arrhenius integral:

I (x) ≈ In(x)= exp (−x)

x

(
1 − x

Pn(x)

Qn(x)

)
, (19)

where the error of those approximations can be given by exp (−x) δn(x). Examples
of those approximations are presented in Table 1.

The relative error percentages, εn(x), of the Arrhenius integral calculated by means
of approximations In(x) is defined by the following equation:

εn(x)= exp (−x) δn(x)

In(x) + exp (−x) δn(x)
× 100% . (20)

In the Table 2, some values of the relative error percentages εn(x) for n = 1, 2, 3 and 4
are presented. It can be verified from Table 2 that there is a significant decrease in the
εn(x) values with an increase in x , and so on as you progress across the columns of the
Table. Moreover, it is worth observing that the errors also decrease with the increasing
of the n values in the approximation.

Table 1 Examples of
approximations In(x)

n In(x)

1 exp(−x)
x

1
x+1

2 exp(−x)
x

x+2
x2+4x+2

3 exp(−x)
x

x2+7x+6
x3+9x2+18x+6

4 exp(−x)
x

x3+14x2+46x+24
x4+16x3+72x2+96x+24
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Table 2 Relative error percentages, εn(x), for the approximations of Arrhenius integral I (x) as a function
of x for n = 1, 2, 3 and 4

x ε1(x) ε2(x) ε3(x) ε4(x)

0.1 10.8 7.7 5.7 4.4
0.5 16.1 7.8 3.9 2
1 16.2 5.5 1.9 0.7
1.5 15.3 3.9 1 0.3
2 14.4 2.8 0.6 0.2
2.5 13.5 2.1 0.4 0.1
5 10.1 0.7 0.1 7.5 × 10−3

10 6.7 0.2 6.3 × 10−3 3.5 × 10−4

15 5 0.1 1.4 × 10−3 4.4 × 10−5

20 4 3 × 10−2 3.9 × 10−4 9 × 10−5

25 3.3 2 × 10−2 1.6 × 10−4 2.5 × 10−6

30 2.9 1 × 10−2 7.5 × 10−5 8.5 × 10−7

35 2.5 7 × 10−3 3.8 × 10−5 3.3 × 10−7

40 2.2 4.8 × 10−3 2.1 × 10−5 1.5 × 10−7

50 1.8 2.6 × 10−3 7.5 × 10−6 3.6 × 10−8

5 Conclusions

In this article, approximations for the Arrhenius integral based on convergents of
the Jacobi fractions are presented. These approximations are easily determined
because they are rational functions whose denominator and numerator are polyno-
mials which can be easily generated from three-term recurrence relations. It can still
be observed that approximations obtained by Jacobi fractions are equivalent to those
established by Gaussian quadrature. The results show that the accuracy of the cal-
culation of the Arrhenius integral depends on values where x = E/RT , where E
is the activation energy, R is the gas constant and T is the temperature. It can be
seen that the error increase when x approaches zero and decreases with the increase
in the x values. Increasing the order, (n), of the approximation also decreases the
error.
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